Footstep Planning for Humanoid Robots with Obstacle Avoidance
           

- 指導教授 黃漢邦 博士 研究生 洪瑄徽

- Advisor :Dr.Han-Pang Huang Student : Syuan-Huei Hong

Lab. of Robotics., Department of Mechanical Engineering, National Taiwan University, Taiwan

Abstract:

The main research of this thesis is to generate a footstep trajectory rapidly for a humanoid robot in the environment. Being different from a mobile robot, a humanoid robot has the ability to step on and down or step across motion to overcome obstacles. We use the algorithm that is developed in this thesis and the database to achieve the goal of trajectory generation.

The algorithm that is proposed in this thesis is based on the basic RRT (Rapid Random Tree) algorithm. By adding the footstep transition models, the Multi-RRT algorithm is used to generate a footstep path of the humanoid robot. However, there are a lot of moving obstacles in the human living life. The dynamic Multi-RRT algorithm is the method to avoid moving obstacles by modifying the original path that is generated by the Multi-RRT algorithm. In addition, some information of the environment affects the stability of the robot. For example, the quality of commands transmission is influenced by the strength of the wireless signal. Even though, we cannot measure all the measurement in the map, we use the way to predict the values. Finally, we propose the DDAO Multi-RRT algorithm by considering the cost map that is modeled by a Gaussian Process.

With the information of the map and the time-varying footstep trajectory, the humanoid robot can reach the goal by automatically changing the path. In this way, the humanoid robot can blend into our daily life.





中文摘要:


這一篇論文主要是在探討如何在環境中讓人型機器人可以快速地產生一條路徑並且順利地避開障礙物。此外,不同於輪型機器人,人形機器人可以藉由踏高和踏低或是跨越的動作來克服在生活中的障礙物。我們的目標是要藉由本篇所發展的演算法和建立的資料庫來完成步態軌跡的生成。

本篇論文的演算法是從基本的 RRT (Rapid Random Tree) 演算法開始發展的。為了能夠將RRT應用在人型機器人的軌跡生成,Footstep Transition Models 會被加入到RRT演算法當中,稱為Multi-RRT 演算法。然而,在生活中除了有靜態的障礙物,也有許多動態的障礙物。藉由隨著時間修改Multi-RRT,動態Multi-RRT可以順利的避開移動的障礙物。此外,在環境中,除了判別障礙物之外,有些資訊也會造成機器人行走的不穩定,舉例來說,如果是用無線訊號在傳遞命令給機器人,那麼在地圖上無線訊號的強度的分布情形就很重要。我們不可能去量測地圖上的每一個點的資訊,但是可以用預測的方式去預估。將 Gaussian Process所預估出來的地圖資訊考慮到演算法當中,最後,我們提出了DDAO Multi-RRT演算法。

藉由考慮地圖的資訊與隨著時間改變的步態軌跡,人形機器人可以自動調整軌跡成功克服環境中的障礙物並到達目標點。如此一來,人形機器人便能夠更有機會融入在我們的生活中了。