Machine Learning and Coordination of a Multi-Agent Robot Soccer System - 指導教授 黃漢邦 博士 研究生 林俊賢 - Advisor :Dr.Han-Pang
Huang Student :林俊賢 Abstract:
The objective of this thesis is to develop a robot
soccer strategy system that can cooperate, coordinate, and learn. In order to
achieve cooperation, we use a hierarchical architecture is employed. A
primary robot is chosen and a fuzzy evaluator is used to evaluate the state
of the field. Then a strategy is determined for command other robots to
execute the strategy. In order to achieve the coordination, a multi-obstacle
avoidance algorithm is developed to avoid action conflict among robots. A
machine learning method is developed to improve the strategy system itself
through the learning process. The complete algorithm had been verified in the
2002 FIRA World Cup of soccer robot competition and showed excellent results.
In fact, our team,
中文摘要: 本文的主要目的,是發展一個具有合作、協調與學習功能的足球機器人策略系統。為達成合作,所利用的方式是採用階層式的命令架構,選擇一個主要機器人,由主要機器人經由模糊邏輯(Fuzzy Logic)來評估場上狀態,決定策略,並命令其它機器人執行所選定的策略。為了達到協調的功能,本文建了一個閃避多重障礙物的演算法,使機器人之間的動作不會彼此影響。
本文亦發展了一個機器學習的方法,使策略系統能夠在多個策略之中經由學習的過程,學會選擇較佳的策略使系統的表現逐漸進步。
|