Research of Remote Diagnosis and Maintenance of a Semiconductor Cluster Tool
           

 

- 指導教授 黃漢邦 博士 研究生 顏進源

- Advisor :Dr.Han-Pang Huang Student :顏進源

Lab. of Robotics., Department of Mechanical Engineering National Taiwan University Taiwan

Abstract:

The development is still prosperous in semiconductor manufacturing industry in recent years. The wafer size enlarges from 200 mm to 300 mm , and the factory automation is getting more and more important. Since machines are vital resources in the factory automation, the effective monitoring of the machine statuses and the good diagnosis and maintenance analysis are helpful to make the operation processes stable. Through internet, machine statuses in the clean room of IC foundry can be monitored by users or engineers remotely.

The purpose of this paper is aimed at the architecture and development for remote diagnosis and maintenance system of a cluster tool. A statistical process control (SPC) and run-by-run module are used to detect and eliminate the process variations. A diagnosis module uses a neural network and Internet Interactive Case-Based Reasoning (IICBR) to predict and diagnose a cluster tool separately. A maintenance module is supplied to forecast maintenance time and choose an adequate policy. All significant information can be notified and interacted via GMPP and web server. Hence, a three-tiered architecture is developed for a cluster tool. All modules are integrated to construct the remote diagnosis and maintenance system.

 





中文摘要:   

近年來,半導體製造業仍是蓬勃發展,晶圓的尺寸也從八吋擴大到十二吋,自動化的運作已經成為主流。由於機器是工廠自動化中最重要的資源,因此有效地監控機器的狀況,運用現場加工的資料來對機器狀態進行故障診斷和維修,將有助於生產流程的穩定。此外,半導體的機台必須在無塵室中運作,透過網際網路,將可以使操作員和原廠工程師進行遠端監控和診斷,因此對於機台的維護就更方便。

本論文主要探討半導體集結式加工機台的遠端診斷及維修的架構和發展。統計製程管制和批次控制模組用來檢測和消除製程變異,診斷模組則使用類神經和案例式推論分別對機台作預測和故障診斷,維修模組則提供維修的時間的預測和策略選擇來保養機台,所有重要資訊都能夠透過網頁和訊息傳遞平台 (GMPP) 來通知遠端的使用者以便瞭解機台目前狀況。最後,對集結式加工機台建置一個三層式架構,整合各模組完成實現遠端診斷和維修。